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Abstract The dressed diagonal approximation to the self-
consistent – size consistent CI, corrected for off-diagonal
Fock matrix elements in localized orbitals is developed and
applied to the ammoniac dimer system. A quite correct cor-
relation energy can be obtained for this system, with a sig-
nificantly reduced dependence of the results on the choice of
the localization procedure. When calculating an interaction
energy, the choice of the monomer orbitals and the applica-
tion of the Boys–Bernardi counterpoise procedure shows in
this case an unusual behavior: the correlation energy does not
increase with the size of the atomic basis sets. Nevertheless
a reasonable potential curve can be obtained.

Keywords Perturbation theory · Basis set superposition
error · Intermolecular interactions · Diagram expansion ·
Localized orbitals

1 Introduction

Calculating accurate intermolecular interaction energies for
weakly interacting systems remains a challenging task, espe-
cially when considering the obtained data as inputs for the
construction of simpler multi-center potentials for simula-
tions of realistic chemical and biological systems. For
relatively small interacting systems, super-molecular calcu-
lations may be performed even at most sophisticated levels
of theory like CCSD(T), but for larger systems, these meth-
ods may be no longer applicable while less expensive DFT
calculations fail to describe dispersion interactions correctly.

Perturbation theory, if it can compete with the precision
of the other methods, is still available as an alternative. In
practice, second-order Møller–Plesset [1] perturbation theory
(MP2) is a widely used and relatively reliable tool for cal-
culating intermolecular interaction energies. However, MP2
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misses important contributions to the correlation energies as
well for the dimer as for the monomer systems, and a can-
cellation of these terms is responsible for the generally good
performance. In the present article, we would like to pres-
ent variants of another perturbation series, including infinite-
order summations of Møller–Plesset diagrams, namely the
commonly known, but nowadays rarely used Epstein–Nes-
bet perturbation theory, which remained since the 60s in the
interest of J.-P. Malrieu’s work [2–8].

The basic form of Epstein–Nesbet perturbation theory [9,
10] is obtained when choosing the unperturbed Hamiltonian
being the diagonal of the exact Hamiltonian in a determinan-
tal basis (Hartree–Fock reference determinant �0 and excited
determinants �I ; �J be as well the reference �0):

H = EHF|�0〉〈�0| +
∑

I

|�I 〉〈�I |H|�I 〉〈�I |
︸ ︷︷ ︸

HEN
0

+
∑

I

∑

J �=I

|�I 〉〈�I |H|�J 〉〈�J |
︸ ︷︷ ︸

VEN

. (1)

This form of perturbation theory is known to be notori-
ously difficult to assess due to the interplay of summations
and shifts in denominators, which hinder factorizations and
separations of partial sums of specific interactions or dia-
grams. Localizing molecular orbitals may help to circum-
vent several of the difficulties as was shown in model cases
[5]. For the present study, the example of a molecular dimer
has been chosen since for this relatively simple system with a
straightforward understanding of localization and delocaliza-
tion we may study the addressed problems in detail – local-
izing means here primarily separating the molecular orbitals
to be centered on one or the other monomer. An extension
of the results to be presented towards periodic systems may
be a subsequent step. In fact, the development of the combi-
nations of various series of perturbation theory had its origin
in the research for a perturbative calculation of the corre-
lation energy for periodic systems, as CI-based methods in
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localized orbitals still seem very demanding for these appli-
cations [11].

The article is structured as follows: in a first section we
recall Epstein–Nesbet perturbation theory at second order,
and we introduce the diagonal dressings as possible variants,
including without significant extra cost, substantial contri-
butions from higher excitations beyond the space spanned
by doubly excited determinants. Non-zero off-diagonal Fock
matrix elements, as to be included due to the orbital localiza-
tion, will be accounted for in a simple approximation, leading
to an overall method which is rather inexpensive to apply.

After a brief presentation of the computational details we
come to the numerical results. In that section we will show
the performance of the proposed combination of different
infinite summations of diagrams for the NH3 dimer and we
will discuss an unexpected behavior of the correction for the
Basis Set Superposition Error (BSSE) following the Boys–
Bernardi procedure [12] as an essential element of the accu-
rate calculation of any interaction energy. Section 5 presents
the conclusion and closes the article.

2 Theoretical considerations

2.1 Dressed Epstein–Nesbet perturbation theory

Epstein-Nesbet perturbation theory can either be developed
directly from the partitioning of the Hamiltonian (Eq. 1) or
it may be obtained from two other starting points: we may
add to the basic second-order diagram in Møller–Plesset per-
turbation theory the infinite series of all those higher-order
diagrams which repeat the (spin-)orbital indices (Fig. 1).

Or we take the matrix formulation of the infinite-order
Møller–Plesset perturbation series in all double excitations
(DMBPT-∞, or commonly called Coupled Electron Pair
Approximation, CEPA-0)
∑

i jab

〈�0|V|�ab
i j 〉 cab

i j = ECorr

〈�0|H|�ab
i j 〉 − EHF +

∑

klcd

〈�cd
kl |H|�ab

i j 〉 ccd
kl = 0 (2)

and restrict the matrix to the first line/column and the diag-
onal (i, j, . . . denote here occupied spinorbitals (or holes),
and a, b, . . . stand for virtual spinorbitals (or particles); the
coefficients cab

i j determined by the second line in Eq. 2 enter
the expression for the correlation energy in the first line).
Both approaches may be found in standard textbooks [13].

The theory of intermediate Hamiltonians [14] led to the
construction of the Full CEPA or (SC)2CI in adding to the

i ba j i ba

i a

i ba

i a
i a+ + +

MP2

j j

Fig. 1 Part of the infinite series of same-index diagrams

CEPA-0 equations all linked excitations in so-called exclu-
sion-principle-violating diagrams, which repeat one or more
indices in quadri– or higherly excited determinants [15]. The
summation of these diagrams can be cast into a (self con-
sistent) shift of the diagonal of the Hamilton matrix in the
determinantal basis, which permits to address a large variety
of CI or CEPA-based correlation methods [11], even up to
CCSD with estimations of connected triple excitations [16,
17]. The interest in these methods lies in the fact that at the
cost of a theory including only doubly-excited determinants,
a large number of higher excited determinants are accounted
for in the calculation of the correlation energy (but not in the
wavefunction).

Since the basic Epstein–Nesbet second-order correlation
energy makes use of the diagonal of the CEPA-0 equations,
the same dressings may be applied, leading as well to a self-
consistent procedure. We may call these dressed Epstein–
Nesbet second-order perturbation theory, summing as many
higher-order diagrams as possible without significantly increas-
ing the computational effort of the procedure. The diagonal
approximation of the (SC)2CI was already derived implicitly
as set of 2×2 eigenvalue problems in the articles of Lepetit
and Malrieu [18,19]. From the multitude of possible dress-
ings in this more general view – we dispose of all possible
dressings of CEPA-based matrix methods – we will use only
two in the present article: the dressing of the averaged coupled
pair functional of Gdanitz et al. [20] (ACPF) and the (SC)2CI
scheme. For the former, we add to the diagonal of the Ham-
iltonian an averaged effect of the EPV diagrams through a
term �ab

i j = −(2/n)ECorr with n being the number of elec-
trons in the system. In order to obtain the dressing for the
(SC)2CI, we perform the summation over all EPV diagrams
individually as

�ab
i j = −

∑

EPV(i, j,a,b)

〈�ab
i j |H|�abcd

i jkl 〉 ccd
kl

= −
∑

EPV(i, j,a,b)

〈�0|H|�cd
kl 〉 ccd

kl (3)

for each index couple i, j, a, b. EPV(i, j, a, b) means here
that at least one of the indices k, l, c, d is equal to one of
i, j, a, b. This summation can be partially pre-calculated and
presents no significant additional work, as was shown in ref-
erence [19]. We may note that the reduction 〈�ab

i j |H|�abcd
i jkl 〉 =

〈�0|H|�cd
kl 〉 holds only for orthogonal orbitals, otherwise

cofactors of the overlap matrix have to be introduced. The
coefficients cab

i j of the first-order wavefunction are obtained
from

〈�0|V|�ab
i j 〉 +

(
〈�ab

i j |H′|�ab
i j 〉 + �ab

i j

)
cab

i j = 0 or

cab
i j = − 〈�0|V|�ab

i j 〉
〈�ab

i j |H′|�ab
i j 〉 + �ab

i j

, (4)

where we set 〈�I |H′|�J 〉 = 〈�I |H − EHFδI J |� j 〉. This
becomes a system of equations to be solved iteratively, since
the wavefunction coefficients ccd

kl enter the dressing �ab
i j ,

and thus the reduction defines a recursion from doubly ex-
cited determinants to any level of excitation. The first line
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of Eqs. 4 corresponds to the diagonal approximation of the
dressed CEPA-0 (see Eq. 2 with the dressing �ab

i j ), whereas
the second line is the formula from first-order perturbation
theory with shifted denominators. Finally, the expression
for the correlation energy for the dressed Epstein–Nesbet
perturbation theory at second order reads

E (2)
Corr =

∑

i jab

∑

Spins

〈�0|V|�ab
i j 〉cab

i j

= −
∑

i jab

∑

Spins

|〈�0|V|�ab
i j 〉|2

〈�ab
i j |H′|�ab

i j 〉 + �ab
i j

. (5)

We may note that the spin settings of the orbitals in the sum
has to be carried on explicitly, since the dressings may take
different forms for different combinations. For Epstein–Nes-
bet theory without dressing an explicit formula has been given
to extract only one single contributing spin combination [21]
or to average over all possible settings [22].

2.2 Using localized orbitals

Upto this point, all the discussion of perturbation theory and
summation of EPV diagrams assumed implicitly the Møller–
Plesset partition of the Hamiltonian in a mono-electronic part
and a bi-electronic one. This decomposition is straight-for-
ward in canonical orbitals where the Fock matrix is diagonal.
If this is not the case, as for localized orbitals, additional inter-
actions and diagrams have to be taken into account, coupling
determinants with different indices exactly by these off-diag-
onal Fock matrix elements. These are either incorporated in
the zeroth-order Hamiltonian, and lead not any more to a
simple expression for the zeroth-order energy as the sum of
the orbital energies, or a second perturbation series in these
elements has to be added to the series in bi-electronic matrix
elements.

Cast in formulæ, the decomposition of the Hamiltonian
reads in canonical orbitals

H(MP)
0 =

∑

µ

εµ a†
µaµ

V(MP) = H − H(MP)
0 =

∑

µ,ν,ρ,σ

( µν | ρσ ) a†
µ a†

ρ aν aσ

−
∑

µ,ν

〈µ|
∑

i∈occ.

2Ji − Ki |ν〉 (6)

with the orbital energies εµ and bi-electronic integrals (µν|ρσ),
and in localized orbitals then

H(MP,loc)
0 =

∑

i ′
Fi′i′ a†

i ′ai ′ +
∑

a′
Fa′a′ a†

a′aa′ . (7)

The extra-diagonal elements of the Fock operator become a
mono-electronic part of V

V(MP)
loc = V(MP) +

∑

i ′ �= j ′
Fi′j′ a†

i ′a j ′ +
∑

a′ �=b′
Fa′b′ a†

a′ab′ . (8)

For second-order Møller–Plesset theory this results in the

F

F

F

FF

F

additional perturbation in F canonical orbitals localized orbitals

Fig. 2 The series of the infinite summation of off-diagonal Fock matrix
elements. Some partial sums in third order, fourth order, and an infinite
summation of paired Fock-matrix interactions have been presented in
[7]

series of diagrams [23] to be summed over which is depicted
in Fig. 2.

The series can be introduced in the CEPA–0 equations
by replacing the off-diagonal matrix elements 〈�I |H|�J 〉
by the mono-electronic part 〈�I |F|�J 〉, leading thus to a
high-dimensional system of linear equations to be solved.
The result will be the MP2 energy as calculated in canoni-
cal orbitals and which is commonly implemented in standard
program packages working in localized orbitals [24].

A trivial way to evaluate the infinite series of Fig. 2 is to
perform a MP2 calculation in canonical orbitals (MP2C), to
use the same formula for localized orbitals (MP2L) and to
take the difference MP2C−MP2L. This difference then may
be added to the evaluation of the higher-order bielectronic
interactions in the (dressed) Epstein–Nesbet series of Eq. (5).
Doing so permits to still separate the bi-electronic interac-
tion and the interaction through off-diagonal Fock matrix ele-
ments, introduced by the localization procedure. Of course,
we should keep in mind that we neglect in this way all com-
bined diagrams of Figs. 1 and 2.

2.3 Consequences of orbital delocalization

After having accounted for the off-diagonal Fock matrix ele-
ments we may turn to another impact of using localized
orbitals instead of canonical ones: the infinite summation
of same-index diagrams which make the difference between
MP2 and EN2 perturbation theory, manifests itself in addi-
tional Coulomb and exchange matrix elements in the energy
denominator, the numerators |〈�0|V|�ab

i j 〉|2 being the same
for both:

Fii + Fj j − Faa − Fbb︸ ︷︷ ︸
Møller–Plesset

→ Fii +Fj j −Faa −Fbb− J̃i j − J̃ab+ J̃ia + J̃ib+ J̃ ja + J̃ jb︸ ︷︷ ︸
Epstein–Nesbet

(9)

for an index quadruple i jab and the generalized, spin-depen-
dent combination of Coulomb and exchange integral J̃ij =
Ji j − Ki jδσi σ j (Fig. 3).

We may consider just one orbital s on either fragment of
the dimer system, and form a completely delocalized (canon-
ical) molecular orbital φ. From this we calculate the corre-
sponding Coulomb matrix element Jφφ and take the limit for
large inter-fragment distances R setting all mixed densities
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Fig. 3 The matrix elements of the same-index interactions. Possible
denominators and signs are not shown since they depend on the rest of
the complete diagram

s1(�r)s2(�r) to zero:

φ(�r) = 1√
2

(s1(�r) + s2(�r)) .

Jφφ = (φφ|φφ) ≈ 1

4

[
Js1 + Js2 + 2 Js1s2

]

= 1

2

[
Js + 1

R

]
. (10)

The result of this elementary consideration is a factor of 2
and an artificial 1/R dependence of the correlation energy in
canonical orbitals, which is completely absent for perfectly
localized orbitals [25]. In practice, this ideal localization can
never be achieved and a little effect remains, as we will show
in the next section. The dressings introduced above do not
change significantly this general result.

Thus there is a fundamental difference between Epstein–
Nesbet perturbation theory in localized or in canonical orbi-
tals. In Møller–Plesset perturbation theory the advantage of
using localized orbitals remains from a physical point of view
only of limited interest since only second-order diagrams in
the bi-electronic interactions are summed over. In Epstein–
Nesbet theory, however, we deal with infinite summations
either over completely dispersed contributions, again with-
out interest, or, in localized orbitals, over the leading contri-
butions to infinite order, damped through the addition of the
higherly excited EPV diagrams. Trying thus to reproduce the
(dressed) Epstein–Nesbet result of canonical orbitals cannot
be our concern since the correlation energy becomes distance
dependent and as well strongly dependent on the number of
atoms, over which molecular orbitals are delocalized.

On the contrary, we would like to use the correlation cal-
culation in the limit of localized orbitals and compete with
more sophisticated methods like Coupled-Cluster expansions,
but at significantly reduced costs.

The approximation we propose here is a balance between
neglecting on one hand attractive contributions of Fock-matrix
elements to the infinite summations of bi-electronic interac-
tions through the use of the difference MP2C−MP2L, and on
the other hand neglecting repulsive bi-electronic interactions
through the diagonal approximation of the CEPA equations.

Our general working scheme for exploiting the presented
theoretical framework for a fairly good and not too expensive
estimation of the correlation energy will be the following:

– We produce localized and canonical orbitals for the sys-
tem to be studied;

– The impact of the off-diagonal Fock-matrix elements will
be estimated from the difference of the MP2 energies for
canonical and localized orbitals;

– The self-consistently dressed Epstein–Nesbet perturba-
tion contributions will be calculated in localized orbitals.

Before giving numerical results the “experimental” system
will be presented briefly.

3 Computational details

For the calculations to be presented, a NH3 dimer in Cs sym-
metry is used, one hydrogen atom lying on the line connecting
the two nitrogen nuclei.

The basis sets are a 8s5p3d basis on nitrogen and a 4s2p
basis on hydrogen atoms, which are not standard ones, but
have been optimized and used for intermolecular problems
by Voisin [26,27], starting from a 12s7p primitive basis of
van Duijneveldt [28] (6s for H), contracted into a 7s4p or 3s
basis, augmented by one diffuse function for each angular
momentum, and 3 polarization functions (d functions with
five components) for N and 2 p functions on H. The qual-
ity has been tested on both monomers and dimer properties
[26,27].

For the perturbation calculations mono- and bi-electronic
integrals are calculated by the Dalton program package [29].
Generating the SCF wave function, the four-index transfor-
mation and the correlation calculations are performed by a
(yet unpublished) suite of ab-initio programs, which were
originally designed for periodic systems, and which have
been adapted to dimer systems. All other calculations
(CCSD(T), DFT, SAPT) were performed with MOLPRO
[30], version 2002.7 and the Delaware SAPT programs [31];
all calculations have been performed on LINUX PCs (Pen-
tium III, RedHat Linux 7.3).

4 Numerical results

In order to obtain localized orbitals for the monomers and the
dimer, we could use the well-established localization pro-
cedures like that of Foster and Boys [32] or of Pipek and
Mezey [33]. for each of the systems independently. Doing
so, however, leaves us only little control over the shape of
the orbitals, and monomer and dimer orbitals may loose
their resemblance. This last detail will become important
when discussing the Basis Set Superposition Error in the next
section.

4.1 Calculating the correlation energy for the dimer

So for the dimer system we chose for an alternative,
denoted CIS (Configuration Interaction of Single excitations)
in the following: we first calculate the monomer wavefunc-
tions in their respective basis sets through the standard Har-
tree–Fock procedure, leading to canonical monomer orbitals.
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Fig. 4 The ammoniac dimer (left) The system is of Cs symmetry, with N–H distances of 1.017 Åand an intra-molecular H–N–H bond angle
of 107.81◦. The intermolecular N–H–N angle is 180◦. On the right-hand side we show several typical results for the position and the depth
of the intermolecular potential minimum, calculate with different methods, in Ångtrøm and milli-Hartree (1 H = 1 a.u. = 627.51 kcal/mol). The
hybrid version of Symmetry-Adapted Perturbation Theory (SAPT) takes the Hartree–Fock intermolecular potential and adds to this correlation
corrections obtained from the unperturbed monomer Hartree-Fock wave functions. BLYP and B3LYP are density functional results, whereas
LMP2 stands for canonical MP2 perturbation theory, expressed in localized orbitals with non-orthogonal virtual orbitals [30]. Note the relative
importance of triple excitations in Coupled-Cluster theory

Table 1 Calculated correlation energies, for the dimer at a N–N distance of 3.000 Å

MP2L EN2L(F) Appr. ACPF Appr. SCSC

Canonical −0.470275 (100.0) −0.513718 −0.505705 −0.495812 (96.9)
CIS −0.455244 (96.8) −0.530565 −0.522569 −0.513305 (100.3)
CIS (F) −0.460619 (97.9) −0.531611 −0.523252 −0.513497 (100.3)
Pipek–Mezey −0.424812 (90.3) −0.526506 −0.520700 −0.514934 (100.6)
Pipek–Mezey (F) −0.463163 (98.5) −0.529634 −0.521279 −0.511513 (99.9)
Boys −0.336275 (71.5) −0.525607 −0.522455 −0.519038 (101.4)
Boys (F) −0.465726 (99.0) −0.534093 −0.525261 −0.514971 (100.6)

The corresponding CCSD(T) result is −0.511835 a.u.. For the (SC)2CI dressing we give the percentage of the CCSD(T) correlation energy in
parentheses, for MP2L the percentage of canonical MP2. The diagonalization of F within the orbital spaces attributed to the monomers is indicated
by “(F)”. For the Boys and Pipek–Mezey localizations, occupied and virtual orbitals are localized separately, freezing the canonical 1s orbitals on
the nitrogen atoms and the twelve highest virtual orbitals. We may remark that even for the Boys localization, which leads to large contributions
of the off-diagonal Fock matrix elements, the obtained difference to the CCSD(T) results is only of 1.5% for the (SC)2CI dressing

These orbitals, delocalized over the individual NH3 mono-
mers, serve as starting orbitals for the occupied and the vir-
tual orbitals of the dimer system, and we iterate now on
the sequence of orthogonalization of the occupied orbitals,
construction of a Fock matrix, and a CI of mono-excita-
tions, for which the interactions of mono-excited determi-
nants is approximated by the necessary Fock matrix elements,
neglecting pure bi-electronic interactions [34,35]. The CI
expansion with coefficients ca

i is projected in first order on a
single determinant with corrected occupied (ϕi ) and virtual
(ϕa) orbitals through

ϕi → ϕi +
∑

a

ca
i ϕa and ϕa → ϕa −

∑

i

ca
i ϕi . (11)

The CI procedure lowers the total energy and assures thus a
convergence toward the Hartree–Fock solution of the dimer
system. The convergence criterion is in this case Brillouin’s
theorem, that is the smallness of Fock-matrix elements cou-
pling occupied and virtual orbitals and the resulting orbitals
should represent as most as possible the starting monomer

orbitals. We may even introduce an additional monomer delo-
calization, in that off-diagonal intra-molecular Fock matrix
elements are transformed to zero through a partial diagonal-
ization of the Fock matrix of the dimer system, sketched in
Fig. 5. We will denote this monomer delocalization by add-
ing “(F)” to CIS. Diagonalizing the whole Fock matrix in one
additional step produces, of course, canonical orbitals.

So we know how to compute the dimer’s Hartree–Fock
and correlation energies, in canonical and in localized orbi-
tals. We give in Table 1 the values at RN–N = 3.00 Å in
detail, for different sets of orbitals. We see that the elimi-
nation of intra-molecular non-zero off-diagonal Fock matrix
elements approaches the MP2 values for localized orbitals
to those of the canonical orbitals, but without changing the
results significantly for the dressed Epstein–Nesbet proce-
dure. The importance of avoiding intermolecular delocaliza-
tion, much more than intramolecular delocalization, is clearly
visible when comparing the dressed and undressed Epstein–
Nesbet variants for canonical orbitals and the different
localized orbital sets.
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Fig. 5 The diagonalization of the Fock matrix on the monomers. o1 and
o2 stand for the occupied orbitals on the two monomers, and v1 and v2
represent the space of the vitual orbitals

The same can be seen in Fig. 6, where we plot the cor-
relation energies as functions of the intermolecular distance.
The dressings alone do not result into a correct dependence
upon the distance for canonical orbitals, as shown in the left
panel of the figure.

For localized orbitals (right panel) we remark first an
increase in the MP2 correlation energy with increasing in-
termolecular distance, due to the decreasing importance of
off-diagonal Fock matrix elements. Adding the series of
bielectronic interactions through the the F-corrected Epstein–
Nesbet perturbation (EN2L(F) if not dressed, or approxi-
mated ACPF and approximated (SC)2CI with dressing)
restores the same trend as MP2 or CCSD(T) with canonical
orbitals. We see additionally that including the EPV diagrams
through the (SC)2CI dressing, not only the values are closer
to the CCSD(T) values but also the variation of results for
EN2L(F) of about 0.01 a.u. are reduced by a factor of 2.

Our chosen balance of an approximate inclusion of off-
diagonal non-zero Fock matrix elements and EPV diagrams
on the infinite series of same-index interactions seems sat-
isfactory for this dimer case, and we may expect the same
behaviour for more extended systems.

4.2 The problem of the BSSE correction

For obtaining now an intermolecular potential curve we have
to subtract the monomer’s total energies. But what orbitals
should we take for the monomers? Canonical orbitals seem
adequate, since first we started the CIS procedure for the
dimer from canonical monomer orbitals and, secondly, we
diagonalized the Fock matrix on the monomers. However, in
order to correct for the BSSE we should carry out the cal-
culations of the monomers in the full dimer basis [12,36].
Canonical orbitals in this basis diagonalize the Fock matrix
in the whole space of the virtual orbitals on both monomers,
not only the blocks on each monomer as in Fig. 5, so the ques-
tion which orbitals to take, is shifted toward the discussion
which virtual orbitals to take. There are several possibili-
ties: either we use all canonical orbitals for one monomer,
expressed in the monomer basis, and orthogonalize the other
monomer’s AO space to these orbitals through projection
(or Gram–Schmidt orthogonalization) or via the symmetric
Löwdin S−1/2 orthogonalization.

Again the CIS procedure relaxes the occupied and virtual
orbitals of the monomer toward the Hartree–Fock solution
in the complete dimer basis. We may again diagonalize the

Fock matrix on the monomer MO spaces, leaving thus non-
zero off-diagonal matrix elements between virtual orbitals on
the monomer and the ghost orbitals.

We may use as well another idea: we may start the CIS
procedure from the localized molecular orbitals of the com-
plete dimer set, just by reattributing the occupation numbers.
The choice of the orthogonalization procedure to generate the
virtual space of the ghost orbitals becomes irrelevant since the
dimer orbitals form already an orthogonal set. This last var-
iant should produce monomer orbitals which ressemble the
most to the dimer orbitals. Projection via the Gram–Schmidt
procedure and the subsequent relaxation toward the monomer
Hartree–Fock solution should give on the other hand the most
localized orbitals in the sense that the difference between the
calculation with or without the ghost basis should be small.

For the different monomer orbital sets proposed we calcu-
late the correlation energy with our dressed Epstein–Nesbet
procedure taking into account the difference between MP2C
and MP2L as infinite summation of interactions through off-
diagonal Fock-matrix elements. The result for the correlation
energies is given for one intermolecular distance in detail in
Table 2.

If we compare just the first two lines of Table 2 with
canonical orbitals, we find the behavior described in the
theoretical considerations. The MP2 energy lowers when
augmenting the basis sets, whereas the (dressed) Epstein–
Nesbet energies become less important with larger basis sets
due to the orbital delocalization over the two monomers.
An interesting and a bit unexpected effect arrives when us-
ing the different sets of localized orbitals: the only set, for
which the correlation energy becomes larger is that gener-
ated by orthogonalizing the ghost basis set by the Gram–
Schmidt procedure. All other procedures show the same trend
of smaller correlation energies for the dressed Epstein–
Nesbet results in the dimer basis than in the pure monomer
basis.

The lowering of the correlation energy when adding the
ghost basis set through the Gram–Schmidt procedure may be
expected, since the monomer orbitals are only slightly mod-
ified via the subsequent CIS procedure, and all added terms
of the form

−〈�I |V|�0〉2/〈�I |H − EHF|�I 〉
are negative. For the other orbital sets the added terms remain
negative, but the original terms may have changed due to
the orbital deformation by orthogonalization to less negative
values and thus an overall decrease in the correlation energy
occurs. By the way we found through the Gram–Schmidt pro-
cedure an example, where the infinite series of Fock-matrix
elements (Fig. 2) gives a positive (repulsive) energy contri-
bution, i.e., the MP2L energy is lower than the MP2 energy
in canonical orbitals.

We may advance two arguments for choosing a construc-
tion of monomer orbitals to be used to calculate an interaction
energy. For the orbitals obtained through orthogonalization,
we started from the same sets for monomer and for dimer
orbitals, namely canonical monomer orbitals in the basis sets
of the respective monomers. But on the other hand, the closest
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Fig. 6 Correlation energies for the dimer system. The left panel shows the different Epstein-Nesbet variants in comparison to MP2 and CCSD(T),
all in canonical orbitals. The wrong dependence on the intermolecular distance of the Epstein–Nesbet scheme is clearly visible. The right panel
shows the same variants for different sets of localized orbitals (Pipek–Mezey localization, Pipek–Mezey localization with diagonalization of F
on the monomers, localization via the CIS scheme (see text), both with and without diagonalization of F on the monomers

Table 2 Sum of the two monomer correlation energies, at a N–N distance of 3.000 Å

MP2L EN2L(F) ACPF(approx.) (SC)2(approx.)

Monomer basis
Canonical −0.466007 −0.531440 −0.522287 −0.511821

Dimer basis
Canonical −0.467137 −0.509344 −0.501588 −0.492834
CIS with projection −0.467859 −0.532708 −0.523496 −0.513305
CIS with S−1/2 −0.453774 −0.528116 −0.520054 −0.510832
The same with diag F −0.462438 −0.528561 −0.520013 −0.510172
CIS from dimer CIS(F) −0.447605 −0.525644 −0.518076 −0.509429
The same with diag F −0.451887 −0.526343 −0.518485 −0.509457

Different sets of orbitals are employed. The corresponding CCSD(T) results are −0.508877 a.u. (monomers in the dimer basis) and −0.507724 a.u.
(monomers in their respective basis). For “CIS” see text

ressemblance between monomer and dimer orbitals, and thus
the best account for the presence of the dimer basis set for
both the monomer and dimer calculations should be obtained
when recalculating monomer orbitals with the dimer orbitals
as starting point. This procedure seems to us the most bal-
anced approach for calculating the interaction energy, relying
on the three-step procedure

1. Determine a set of canonical monomer orbitals in the
respective monomer AO basis sets,

2. Calculate dimer orbitals through the CIS or CIS(F) pro-
cedure from the monomer orbitals,

3. Take the CIS or CIS(F) orbitals as starting vectors to
obtain monomer orbitals in the dimer basis

and avoiding an additional arbitrariness through the choice of
the orthogonalization procedure (Gram–Schmidt or S−1/2 or
others). In this way the orbital delocalization – which may be
suspected to be present in the dimer calculation as well when
approaching the two monomers – is taken into account for
both the dimer and the monomer system and we may hope to
achieve a consistent correction for the basis set superposition
error.

Thus we may accept this a priori unusual behavior of the
correlation energy for the monomer systems: we augment

Table 3 Minima of the intermolecular interaction potential for the NH3
dimer, in mH and in kcal/mol

R (Å) �E (mH) �E (kcal/mol)

CCSD(T) 3.389 −4.23 −2.66
MP2C 3.379 −4.21 −2.65
CIS, appr. (SC)2CI 3.330 −4.66 −2.92
CIS, appr. ACPF 3.308 −5.09 −3.19

the basis set and the perturbative correlation energy becomes
smaller.

The fact that the orbital delocalization plays a rôle as well
for the dimer system, may be seen when we plot the correla-
tion energy for different intermolecular distances in a smaller
scale than that used in Fig. 6.

Figure 7 displays the correlation energies for the approx-
imated (SC)2 in comparison to CCSD(T) and MP2, for the
monomer and dimer separated, and the contribution to the
potential energy curve, to be added to the Hartree–Fock inter-
action energy. The monomer orbitals are those obtained from
the CIS procedure, without diagonalization of the Fock ma-
trix on the monomers.

We clearly see the unusual behavior of the EN pertur-
bative correlation energy for the monomers from the left
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Fig. 7 The correlation contributions to the interaction potential. On the left-hand side the inidvidual contributions for monomers and the dimer
are plotted, and on the right-hand side their difference, which is added to the Hartree–Fock interaction energy

panel: we approach the ghost basis sets and the correla-
tion energy decreases in value. However, this “anti-BSSE”
behavior seems well compensated when comparing the dimer
curves, where for short distances the (SC)2-dressed Epstein–
Nesbet perturbation approaches the CCSD(T) values more
than for larger distances. The difference between dimer and
monomers, i.e., the correlation contribution to the interaction
energy, results therefore in a converging picture, when com-
paring MP2/CCSD(T) and the (SC)2 dressed Epstein–Nesbet
energies. The ACPF dressing seems to produce a systematic
error. Of course we remark that the simple MP2 scheme gives
a much better coincidence with CCSD(T) than our proposed
dressed Epstein–Nesbet theory, where we obtain deviations
from the CCSD(T) results up to 1 kcal/mol. Nevertheless,
the often cited “lack of size consistence” defect of Epstein–
Nesbet perturbation theory may be expected to be controlled
through the combination of localization, dressing and inclu-
sion of the off-diagonal Fock-matrix elements. Of course, a
rigourous proof still has to be furnished.

When adding the Hartree–Fock interaction energy and the
correlation contributions into a single intermolecular interac-
tion potential, which we show in Fig. 8, we obtain a
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Fig. 8 The intermolecular potential, compared to CCSD(T)

minimum of the potential close to the MP2/CCSD(T) values,
in the order of half a kcal/mol and an equilibrium distance
5 pm off from the reference values. It may be useful to recall
that the initial development of this method was not the cal-
culation of an interaction energy, but rather the efficient cal-
culation of a correlation energy through perturbation theory.
The application to weakly interacting dimer system presents
a quite diffcult situation for a method being in general not
size consistent and not invariant to orbital rotations.

5 Conclusion

We showed that combining the Epstein–Nesbet second-order
perturbation theory with infinite summations of EPV dia-
grams and infinite summations of off-diagonal Fock matrix
elements leads to an approximation of CEPA-based correla-
tion methods and produces correlation energies comparable
to CCSD(T) results for extended systems, at much lower cost.
The dependence on the shape of the orbitals or on the localiza-
tion procedure is strongly damped with respect to simple sec-
ond-order Epstein–Nesbet perturbation theory, through the
inclusion of both (1) an approximate treatment of the non-
zero off-diagonal Fock matrix elements and (2) a diagonal
matrix dressing to account for the infinite summations of
EPV diagrams, which are accessible without extra signifi-
cant effort.

Using the procedure with localized orbitals avoids the
two defects of Epstein–Nesbet perturbation due to complete
delocalization of canonical orbitals: the artificial 1/R contri-
bution to the correlation energy and the wrong dependence
on the number of particles in the system.

However, a critical test of the dressed Epstein–Nesbet
procedure, the calculation of the intermolecular interaction
energy of a NH3 dimer, showed that orbital delocalization due
to the implication of ghost basis sets is very delicate when
calculating the monomer’s correlation energies and makes
reliable estimates of small energy differences difficult. Look-
ing at correlation energies of the monomers only, we still see
an unexpected behavior due to orbital delocalization on the
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ghost functions. In the dimer AO basis, the EN monomer
perturbative correlation energies decrease with decreasing
intermolecular distance. We propose a three-step construc-
tion of dimer and monomer orbital sets which seems to take
this unexpected “anti-BSSE” effect in a balanced way into
account and leads to reasonable interaction energies for the
NH3 dimer studied.

Thus we conclude that the proposed dressed Epstein–
Nesbet perturbation theory with localized orbitals may be
a good alternative to current trends to calculate correlation
energies for periodic systems – this still has to be confirmed –
but should not be employed for intermolecular interactions.
For these systems the simple second-order Møller–Plesset
perturbation theory in canonical orbitals remains a method of
choice due to the very effective cancellation of missing corre-
lation diagrams for monomer and dimer correlation energies
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